解:(Ⅰ)△ABC中,∵B=π3,a=2,b=√7,由余弦定理可得b2=a2+c2-2ac•cosB,
即7=4+c2-4c•cosπ3,求得c=3.
(Ⅱ)由b=√3,利用正弦定理可得asinA=csinC=bsinB=√3√32=2,∴a=2sinA,c=2sinC.
又S为△ABC的面积,故√3S-cosAcosC=√3•12ac•sinB-cosAcosC
=√3•12•2sinA•2sinC•√32-cosAcosC=3sinA•sinC-cosAcosC=2sinA•sinC-cos(A+C)
=2sinA•sinC+cosB=2sinAsin(2π3-A)+12=sin2A+√3sinAcosA+12
=√32sin2A-12cos2A+1=sin(2A-π6)+1,
故当A=π3时,√3S-cosAcosC
取得最大值为2.