(1)Sn=n2?n+1,n≥2时,Sn?1=(n?1)2?(n?1)+1,
两式相减得:an=n2-n+1-[(n-1)2-(n-1)+1]=2n-2;
当n=1时,a1=S1=1-1+1=1.
∴an=
.
2n?2,n≥2 1,n=1
(2)利用(1)可得a4=2×4-2=6.
设数列{bn}的公比为q,由已知b1=1,b2+b3=a4,
∴b1q+b1q2=6,即q+q2=6,
即q2+q-6=0,
解得q=-3或q=2,
∵an>0,∴q=2.
∴Tn=
=2n?1.1?2n
1?2