①a2=2×2+22+2=10;
a3=2×10+23+2=30;
a4=2×30+24+2=78.
②假设存在一个实数λ,使数列{
}成等差数列,
an+λ 2n
则
?
an+λ 2n
=
an?1+λ 2n?1
=
an+λ?2an?1?2λ 2n
=2an?1+2n+2+λ?2an?1?2λ 2n
=1+
2n+2?λ 2n
恒为常数2?λ 2n
∴2-λ=0即 λ=2
此时
=2,
a1+2 2
?
a2+2 22
=1
a1+2 2
∴λ=2时,数列{
}是首项为2,公差为1的等差数列.
an+λ 2n
③由②得
=2+1×(n?1)=n+1
an+2 2n
得an=(n+1)2n-2
所以:Sn=(2×21-2)+(3×22-2)+(4×23-2)+…+[(n+1)2n-2]
=[2×21+3×22+4×23+…+(n+1)2n]-2n
令 m=2×21+3×22+4×23+…+(n+1)2n…①
2m=2×22+3×23+4×24+…+(n+1)2n+1…②
①--②得:-m=2×21+(22+23+…+2n)-(n+1)2n+1=4+
?(n+1)2n+1
22(1?2n?1) 1?2
得m=n×2n+1
∴Sn=n×2n+1-2n