(Ⅰ)函数f(x)在R上递增.
理由如下:令m<n,则f(m)-f(n)=(a-
)-(a-1
2m+1
)1
2n+1
=
-1
2n+1
=1
2m+1
,
2m?2n
(2m+1)(2n+1)
由于m<n,则2m<2n,
则f(m)-f(n)<0,即有函数f(x)在R上递增.
(Ⅱ)假设存在实数a使函数f(x)为奇函数,
则f(0)=0,即a-1═0,即a=1.
则函数f(x)=1-
=2
2x+1
,
2x?1
2x+1
f(-x)+f(x)=
+
2?x?1
2?x+1
=0,
2x?1
2x+1
故函数f(x)为奇函数.