(1)设{an}的公比为q,{bn}的公差为d,则由已知条件得:
q4+1+2d=21
q2+1+4d=13
解之得:d=2,q=2或q=-2(舍去)
∴an=2n-1,bn=1+2(n-1)=2n-1
(2)由(1)知
=bn 2an
2n?1 2n
∴sn=
+1 2
+3 22
+…+5 23
+2n?3 2n?1
①2n?1 2n
∴
sn=1 2
+1 22
+ …+3 23
+2n?3 2n
②2n?1 2n+1
①-②得:
sn=1 2
+1 2
+2 22
+…+2 23
?2 2n
2n?1 2n+1
即
sn=1 2
+(1 2
+1 2
+…+1 22
)?1 2n?1
=2n?1 2n+1
+1 2
?
[1?(1 2
)n?1】1 2 1?
1 2
=2n?1 2n+1
+1?(1 2
)n?1?1 2
2n?1 2n+1
∴Sn=3?
2n+3 2n