如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,

2025-06-23 03:31:48
推荐回答(1个)
回答1:

∵∠C=90°,BC=6cm,AC=8cm,
∴AB=10cm,
∵将△BCD沿BD折叠,使点C落在AB边的C′点,
∴△BCD≌△BC′D,
∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,
∴AC′=AB-BC′=4cm,
设DC=xcm,则AD=(8-x)cm,
在Rt△ADC′中,AD 2 =AC′ 2 +C′D 2
即(8-x) 2 =x 2 +4 2 ,解得x=3,
∵∠AC′D=90°,
∴△ADC′的面积═
1
2
×AC′×C′D=
1
2
×4×3=6(cm 2 ).
故答案为6cm 2