∠BQM为定值.
理由:如图①,∵△ABC是等边三角形,
∴∠ABC=∠C=60°,AB=BC
∵BM=CN
∴△ABM≌△BCN(SAS)
∴∠BAM=∠CBN(全等三角形的对应角相等),
∴∠BQM=∠BAQ+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°
即∠BQM为定值.
图②中:∠BQM=∠ABN+∠BAM
∵△ABM≌△BCN
∴∠BAM=∠CBN
∴∠BQM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°
图③中:
∠BQM=∠N+∠NAQ
∵△ABM≌△BCN(ASA),
∴∠N=∠M,且∠NAQ=∠CAM,
又∵∠ACB=∠M+∠CAM=∠N+∠NAQ,
且∠BQM=∠N+∠NAQ,
∴∠BQM=∠ACB=60°.