已知数列{an}的前n项和Sn满足:S1=1,3Sn=(n+2)an.(1)求a2,a3的值; (2)求数列{an}的通项公式;

2025-06-20 07:50:11
推荐回答(1个)
回答1:

(1)当n=2时,3S2=4a2,∴3(a1+a2)=4a2,化为a2=3a1=3.
当n=3时,得3S3=5a3,∴3(a1+a2+a3)=5a3,代入得3(1+3+a3)=5a3,解得a3=6.
(2)当n≥2时,由3Sn=(n+2)an,3Sn-1=(n+1)an-1,两式相减得3an=(n+2)an-(n+1)an-1
化为

an
an?1
n+1
n?1

an
an
an?1
?
an?1
an?2
?
…?
a3
a2
?
a2
a1
?a1
=
n+1
n?1
?
n
n?2
?
n?1
n?3
?
…?
4
2
?
3
1
?1
=
n(n+1)
2

(3)由(2)可得:
1
an
2
n(n+1)
=2(
1
n
?
1
n+1
)

1
a1
+
1
a2
+…+
1
an
=2[(1?
1
2
)+(
1
2
?
1
3
)+
…+(
1
n
?
1
n+1
)]

=
2n
n+1