(1)当n=2时,3S2=4a2,∴3(a1+a2)=4a2,化为a2=3a1=3.
当n=3时,得3S3=5a3,∴3(a1+a2+a3)=5a3,代入得3(1+3+a3)=5a3,解得a3=6.
(2)当n≥2时,由3Sn=(n+2)an,3Sn-1=(n+1)an-1,两式相减得3an=(n+2)an-(n+1)an-1,
化为
=an an?1
.n+1 n?1
∴an=
?an an?1
?…?an?1 an?2
?a3 a2
?a1=a2 a1
?n+1 n?1
?n n?2
?…?n?1 n?3
?4 2
?1=3 1
.n(n+1) 2
(3)由(2)可得:
=1 an
=2(2 n(n+1)
?1 n
).1 n+1
∴
+1 a1
+…+1 a2
=2[(1?1 an
)+(1 2
?1 2
)+…+(1 3
?1 n
)]1 n+1
=
.2n n+1