我今天上线才看到这个问题,可能你等急了.
是这样的:
将三角形DAE以A为顶点逆时针旋转一定角度,使DA与BA完全重合,记D点位置为D',连结DD'.则DE=D'B,DA=D'A,∠ADE=∠AD'B.
∵∠1+∠2=180°,
∴D' B C三点共线.
又∵BC+DE=CD,且DE=D'B,
∴BC+D'B=D'C=CD,则∠CD'D=∠CDD'.
∵DA=D'A,
∴∠ADD'=∠AD'D.
则∠CD'D+∠AD'D=∠CDD'+∠ADD'.
即∠CD'A=∠CDA.
又∵∠ADE=∠AD'B,
∴∠ADE=∠ADC.
得证:AD平分∠CDE.
连接AD
AB=AE
->
△ADE绕
A点
旋转,使E点与B点重合,D点转至D'
->
AD=AD',BD'=DE,∠D'BA=∠AED,∠BD'A=∠ADE
∠ABC+∠AED=180°
->
∠ABC+∠D'BA=∠ABC+∠AED=180°
->
D',B,C三点在同一直线上
BC+DE=CD,BD'=DE
->
CD'=BC+BD'=BC+DE=CD
连接DD',CD'=CD
->
∠CD'D=∠CDD'
AD=AD'
->
∠AD'D=∠ADD'
∠BD'A=∠CD'D+∠AD'D
∠ADC=∠CDD'+∠ADD'
->
∠BD'A=∠ADC
∠BD'A=∠ADE
->
∠ADC=∠ADE
->
AD平分角CDE