设圆柱体的底面半径为R,高为H。那么,由勾股定理有:R²+(H/2)²=r²==> R²=r²-(H²/4)圆柱体的体积V=πR²H=π[r²-(H²/4)]H=π[r²H-(H³/4)]令V(H)=r²H-(H³/4)则,V'(H)=r²-(3/4)H²当V'(H)=0时,V有最大值此时:H=(2√3/3)r