如图,已知三角形ABC中,角B大于角C,AD为角BAC的平分线,AE垂直BC,垂足为E,试说明角D

2025-06-20 09:37:51
推荐回答(2个)
回答1:

证明:∠ADE=∠DAC+∠C(三角形任一外角等于它不相邻的两个内角之和)
∵在△ABD中,AE⊥BD ∴∠ADE=90°-∠DAE ,∠BAE+∠B=90°
∴90°-∠DAE =∠DAC+∠C
∵AD为角BAC的平分线 ∴∠BAD=∠DAC
又∵∠BAD=∠BAE+∠DAE
∴90°-∠DAE =∠BAE+∠DAE+∠C
∴∠BAE+∠B-∠DAE=∠BAE+∠DAE+∠C 即 ∠B-∠C=2∠DAE
∴∠DAE=1/2(∠B-∠C)

回答2: