解:(1)由图象得A=1,T/4=2π/3-π/6=π/2
∴T=2π,则ω=1;
将(π/6,1)代入得1=sin(π/6-φ),而- π/2<φ<π/2
所以φ=π/3,因此函数f(x)=sin(x+π/3)
(2)由于x∈[-π,- π/6],
-2π/3≤x+π/3≤π/6
所以-1≤sin(x+π/3)≤1/2
所以f(x)的取值范围是[-1,1/2].