证明:∵∠DAB与∠ABC的平分线交于四边形内一点P,∴∠PAB= 1 2 ∠DAB,∠PBA= 1 2 ∠ABC,∴∠P=180°-(∠PAB+∠PBA)=180°- 1 2 (∠DAB+∠CBA)=180°- 1 2 (360°-∠C-∠D)= 1 2 (∠C+∠D),∴∠P= 1 2 (∠C+∠D).