∵y=lnx,∴y′= 1 x ,∴曲线y=lnx在点M(e,1)处切线的斜率k= 1 e ,曲线y=lnx在点M(e,1)处切线的方程为:y-1= 1 e (x?e),整理,得x-ey=0.故答案为:x-ey=0.
y=x/e.解:∵y=lnx∴y'=1/x∴k=y'∣(x=e)=1/e∴y-1=1/e(x-e)即y=x/e.