详情如图所示
有任何疑惑,欢迎追问
解:lim【sin(x-1)】/(x^2-1)=lim【(x-1)/(x^2-1)】=lim【1/(x+1)】
当x趋近于1时,该极限值为1/2
注:sin(x-1)~(x-1)
[㏑f(x)]'=[v(x)·㏑u(x)]'
f'(x)/f(x)=v'(x)·㏑u(x)+v(x)u'(x)/u(x)
y'/y=v'(x)·㏑u(x)+v(x)u'(x)/u(x)
y'=y[v'(x)·㏑u(x)+v(x)u'(x)/u(x)]
=u(x)^v(x)[v'(x)·㏑u(x)+v(x)·u'(x)/u(x)]