如图,在四边形ABCD中,AB=BC=2,CD=4,DA=二倍根号二,且∠B=90°,求∠DAB的度数

大家帮帮忙吖,真心急呀、、、
2025-06-22 04:58:33
推荐回答(2个)
回答1:

连结AC
∵AB=BC=2 ,∠B=90°

∴∠BAC=45°

∴AC=√2AB=2√2=AD(勾股定理)

∵CD=4

∴AC²+AD²=CD²

∴三角形ACD是直角三角形 ∠CAD=90°
∴∠DAB=∠CAD+∠BAC=135°

回答2:

 

解:连接AC。

∵∠B=90°,AB=BC=2

∴AC^2=√(AB^2+BC^2)=2√2,∠BAC=45°

∵CD=4,DA=2√2

∴AC^2+DA^2=CD^2

∴△ACD是直角三角形

∴∠CAD=90°

∴∠BAD=45°+90°=135°