(1)∵AD⊥BC
∴∠C+∠CAD=90°
∴∠CAD=90-∠C
∵AE平分∠BAC
∴∠CAE=1/2∠BAC
又∵∠BAC=180°-(∠B+∠C)
∴∠CAE=1/2∠BAC=90°-1/2(∠B+∠C)
∴∠EAD=∠CAE-∠CAD
=90°-1/2(∠B+∠C)-90°+∠C
=1/2(∠C-∠B)
又∵∠C-∠B=30°
∴∠EAD=15°
(2)由(1)可知∠EAD=1/2(∠C-∠B)
∴当∠C-∠B=i时
∠EAD=1/2i
∵AD⊥BC
∴∠C+∠CAD=90°
∴∠CAD=90°-∠C
∵AE平分∠BAC
∴∠CAE=∠BAC/2
∵∠BAC=180°-(∠B+∠C)
∴∠CAE=∠BAC/2=90°-(∠B+∠C)/2
∴∠EAD=∠CAE-∠CAD
=90°-(∠B+∠C)/2-90°+∠C
=(∠C-∠B)/2
∵∠C-∠B=30°
∴∠DAE=30°/2=15°