1) Sn=2/(1*3)+4/(3*5)+``````+(2n)^2/(2n-1)(2n+1)=(1+1/1*3)+(1+1/3*5)+``````+[1+1/(2n-1)(2n+1)]
=n+1/2[1-1/(2n+1))=n+n/(2n+1)
中间的裂项求和我给省了,如果看不懂再问吧。
2)这一问其实是均值不等式,我可以简单推一下(ab+ac)^2>=0
ab^2+ac^2-2abac>=0
所以ab^2+ac^2>=2abac
(2k)²/[(2k-1)(2k+1)]=[(2k-1)(2k+1)+1]/(2k-1)(2k+1)=1+1/[(2k-1)(2k+1)]=1+(1/2)[1/(2k-1)-1/(2k+1)]
Sn=∑{1+(1/2)[1/(2k-1)-1/(2k+1)]=n+(1/2)[1/1-1/(2n+1)]=n+n/(2n+1)
bc²=ab²+ac²-2abaccos60° 得ab²+ac²-abac=4
ab²+ac²-abac=(ab-ac)²+abac=4 abac≤4
(ab-ac)²≥0 即可得ab²-2abac+ac²≥0 推导出ab²+ac²≥2abac
三角形abc的面积=(1/2)ab acsinA≤2sin60°=√3
计算来的,祝你学习进步