(1)∵f(1)=a+b+c=0,∴b=-(a+c), ∵f′(x)=3ax 2 +2bx+c, ∴f′(0)=c,f′(1)=3a+2b+c, ∴f′(0)f′(1)=c(3a+2b+c)=c(a-c)=ac-c 2 >0, ∴a≠0,c≠0, ∴
所以0<
(2)令f′(x)=3ax 2 +2bx+c=0,则 x 1 + x 2 =-
∴k=
=
=a( x 2 2 + x 2 x 1 + x 1 2 )+b(x 2 +x 1 )+c =a[ ( x 2 + x 1 ) 2 - x 2 x 1 ]+b(x 2 +x 1 )+c =a(
=a[(
=
令t=
则k=
∵a>0,-t 2 +t-1∈(-1,-
|