已知实数a,b,c∈R,函数f(x)=ax 3 +bx 2 +cx满足f(1)=0,设f(x)的导函数为f′(x),满足f′(0

2025-06-22 09:08:16
推荐回答(1个)
回答1:

(1)∵f(1)=a+b+c=0,∴b=-(a+c),
∵f′(x)=3ax 2 +2bx+c,
∴f′(0)=c,f′(1)=3a+2b+c,
∴f′(0)f′(1)=c(3a+2b+c)=c(a-c)=ac-c 2 >0,
∴a≠0,c≠0,
c
a
-(
c
a
) 2
>0,
所以0<
c
a
1.
(2)令f′(x)=3ax 2 +2bx+c=0,则 x 1 + x 2 =-
2b
3a
,x 1 x 2 =
c
3a

∴k=
f( x 2 )-f( x 1 )
x 2 - x 1
=
(a x 2 3 +b x 2 2 +c x 2 )-(a x 1 3 +b x 1 2 +c x 1 )
x 2 - x 1

=
( x 2 - x 1 )[a( x 2 2 + x 2 x 1 + x 1 2 )+b( x 2 + x 1 )+c]
x 2 - x 1

=a( x 2 2 + x 2 x 1 + x 1 2 )+b(x 2 +x 1 )+c
=a[ ( x 2 + x 1 ) 2 - x 2 x 1 ]+b(x 2 +x 1 )+c
=a(
4 b 2
9 a 2
-
c
3a
)+b(-
2b
3a
)+c
=a[(
4 b 2
9 a 2
-
c
3a
)+
b
a
(-
2b
3a
)+
c
a
]
=
2a
9
(-
b 2
a 2
+
3c
a
),
令t=
c
a
,由b=-(a+c)得,
b
a
=-1-t,t∈(0,1),
则k=
2a
9
[-(1+t) 2 +3t]=
2a
9
(-t 2 +t-1),
∵a>0,-t 2 +t-1∈(-1,-
3
4
],∴k∈(-
2a
9
,-
a
6
].