dθ/(sinθ+cosθ)
=dθ/√2sin(θ+π/4)
=d(cos(θ+π/4))/√2(1-cos²(θ+π/4))
=dx/√2(1-x²)
利用公式: ∫1/√(1-x^2) dx=arcsinx+c
希望对你有帮助,有疑问请追问O(∩_∩)O哈哈~
∫1/(sinθ+cosθ)*dθ=∫1/[√2sin(θ+π/4)]*dθ=(1/√2)∫1/sin(θ+π/4)*d(θ+π/4)=ln|tan[(θ+π/4)/2]|+C=ln|tan(θ/2+π/8)|+C
用到了下面的公式:∫1/sinθ*dθ=ln|tan(θ/2)|+C=ln|cscθ-cotθ|+C
1/(sinθ+cosθ)=1/(根号2(1/2sinθ+1/2cosθ)=1/根号2sin(θ+π/4)
把分子的1变为(sinx+cosx)^2-2sinxcosx
∫1/(sinθ+cosθ)*dθ
=∫1/[√2sin(θ+π/4)]*dθ
=(1/√2)∫1/sin(θ+π/4)*d(θ+π/4)
=ln|tan[(θ+π/4)/2]|+C
=ln|tan(θ/2+π/8)|+C