设弦与椭圆交点为(x1,y1),(x2,y2),弦的中点为(x,y),则
x1²/4+y1²=1 x2²/4+y2²=1
两个式子相减得到:(x1+x2)(x1-x2)/4+(y1+y2)(y1-y2)=0
∵x1+x2=2x y1+y2=2y
∴x(x1-x2)+2y(y1-y2)=0
∴斜率k=(y1-y2)/(x1-x2)=-x/2y
∴y/(x-1)=-x/2y
整理得,x²+2y²-x=0
设A(m,n) B(p,q)为过点(1.0)的弦端点 中点为(x,y)
m²/4+n²=1
p²/4+q²=1
相减得(m-p)(m+p)/4+(n-q)(n+q)=0
k=(n-q)/(m-p)=-(m+p)/[4(n+q)]=-(2x)/(8y)=-x/(4y)
弦过点(1,0),则0-y=-x/(4y)(1-x)
化简得(4y)²+(2x-1)²=1