解(1)
∵ (√an , √an-1) 在直线x –y-√2=0上
∴√an –√an-1 –√2 = 0
√an –√an-1 = √2(n>1)
n =2,3,…时,存在
√a2 –√a1 = √2
√a3 –√a2 = √2
√a4 –√a3 = √2
……………………….
√an –√an-1 = √2 共(n-1)项
两边相加得:
√an –√a1 = (n-1)√2 已知a1 = 2
∴√an –√2 = (n-1)√2
√an = (n-1)√2 + √2 = n√2
an =2 n2
*************************************************************************
sn = a1+ a2+ a3+ ……+ an
sn = a1+ a2+ a3+ ……+ an
=2+2×22+2×32+……+2×n2
=2(1+22+22+……+n2)
∵1+22+32+……+n2= n(n+1)(2n+1)/6
∴sn =[ n(n+1)(2n+1)]/3