∫xarctanxdx 求详细过程

2025-06-21 08:42:38
推荐回答(3个)
回答1:

∫xarctanxdx
=(1/2)∫ arctanxd(x²)
分部积分
=(1/2)x²arctanx - (1/2)∫ x²/(1+x²) dx
=(1/2)x²arctanx - (1/2)∫ (x²+1-1)/(1+x²) dx
=(1/2)x²arctanx - (1/2)∫ 1 dx + (1/2)∫ 1/(1+x²) dx
=(1/2)x²arctanx - (1/2)x + (1/2)arctanx + C

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。

回答2:

这个得用分部积分……
∫xarctanxdx= (1/2)x²arctanx-∫ (1/2)x²(arctanx)'dx
= (1/2)x²arctanx-(1/2)∫ x²/(1+x²)dx
=1/2)x²arctanx - (1/2)∫ (x²+1-1)/(1+x²) dx
=(1/2)x²arctanx - (1/2)∫ 1 dx + (1/2)∫ 1/(1+x²) dx
=(1/2)x²arctanx - (1/2)x + (1/2)arctanx + C
其中原函数是(1/2)x²arctanx
v=(1/2)x² v'=x u=arctanx u'=1/(1+x²)

回答3:

解答:

∫xarctanxdx=(1/2)x^2arctanx-(1/2)∫x^2/(1+x^2)dx=(1/2)x^2arctanx-(1/2)∫[1-1/(1+x^2)]dx

=(1/2)x^2arctanx-(1/2)x^2-(1/2)arctanx+C