f(x)=x^3+ax^2+bx+c
f'(x)=3x^2+2ax+b
由f'(-2/3)=0 f'(1)=0得a=-1/2 b=-2
则f(x)=x^3-1/2x^2-2x+c<3/c
由f'(x)图像知f(x)在[-1,-2/3)上递增,在(-2/3,1)上递减,在(1,2]上递增.
则f(-2/3)<3/c且f(2)<3/c
即22/27+c<3/c且2+c<3/c
即2+c<3/c
c-3/c+2<0
(c^2+2c-3)/c<0
(c-1)(c+3)/c<0
c(c-1)(c+3)<0
解得c属于(负无穷,-3)U(0,1)