如图,直线l的解析式为y=- 4 3 x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从

2025-06-22 09:33:10
推荐回答(1个)
回答1:

(1)当y=0时,0=-
4
3
x+4
解得x=3,
即A(3,0),
当x=0时,y=4
即B(0,4);

(2)Ⅰ当点P在直线AB左边时,
∵矩形OMPN,
∴NP=OM=t
∵m l
∴△OMN △OAB
OM
OA
=
ON
OB

t
3
=
ON
4

∴PM=ON=
4
3
t,
∴s 1 =
1
2
PN?PM=
1
2
?t?
4
3
t=
2
3
t 2 (0<t≤
3
2
),

Ⅱ当点P在直线AB右边时,
∵OM=t,
∴AM=3-t,
∴ME=
4
3
(3-t),
PE=
4
3
t-
4
3
(3-t)=
8
3
t-4,
PF=
3
4
-(
8
3
t-4)=2t-3,
∴s 2 =
1
2
PN?PM-
1
2
PE?PF,
=
1
2
t?
4
3
t-
1
2
8
3
t-4)(2t-3)=-2t 2 +8t-6(
3
2
<t≤3),
综上所述:s 1 =
2
3
t 2 (0<t≤
3
2
),或s 2 =-2t 2 +8t-6(
3
2
<t≤3);

(3)当s 1 =
2
3
t 2 =2时,t=
3
3
2
,舍去,
当s 2 =-2t 2 +8t-6=2时,t 1 =t 2 =2,
此时M(2,0),N(0,
8
3
),
∴存在R 1 和R 2 使△RNM △AOB,
∴∠RNM=∠AOB=90°,∠R 1 MN=∠ABO=∠MNO,
∴R 1 M y轴,
∴R 1 H 1 =OM=2,
∴NH 1 =2×
3
4
=
3
2

∴OH 1 =
8
3
+
3
2
=
25
6

∴R 1 (2,
25
6
),
∴R 2 H 2 =R 1 H 1 =2,NH 2 =NH 1 =
3
2

∴OH 2 =
8
3
-
3
2
=
7
6

∴R 2 (-2,
7
6
),
综上所述:R 1 (2,
25
6
)或R 2 (-2,
7
6
).