(1)当y=0时,0=-
解得x=3, 即A(3,0), 当x=0时,y=4 即B(0,4); (2)Ⅰ当点P在直线AB左边时, ∵矩形OMPN, ∴NP=OM=t ∵m ∥ l ∴△OMN ∽ △OAB ∴
∴
∴PM=ON=
∴s 1 =
Ⅱ当点P在直线AB右边时, ∵OM=t, ∴AM=3-t, ∴ME=
PE=
PF=
∴s 2 =
=
综上所述:s 1 =
(3)当s 1 =
当s 2 =-2t 2 +8t-6=2时,t 1 =t 2 =2, 此时M(2,0),N(0,
∴存在R 1 和R 2 使△RNM ∽ △AOB, ∴∠RNM=∠AOB=90°,∠R 1 MN=∠ABO=∠MNO, ∴R 1 M ∥ y轴, ∴R 1 H 1 =OM=2, ∴NH 1 =2×
∴OH 1 =
∴R 1 (2,
∴R 2 H 2 =R 1 H 1 =2,NH 2 =NH 1 =
∴OH 2 =
∴R 2 (-2,
综上所述:R 1 (2,
|