对一切实数x,有f(1⼀2+x)=1⼀2+√f(x)-f(x)눀,证明:f(x)为周期函数,并求其周期。

2025-06-20 09:56:02
推荐回答(1个)
回答1:

由原式得到,f(x)-f(x)²=f(1/2+x)²-f(1/2+x)+1/4
用x+1/2代入上式,得到:
f(1/2+x)-f(1/2+x)²=f(1/2+1/2+x)²-f(1/2+1/2+x)+1/4=f(1+x)²-f(1+x)+1/4
则得到,f(x)-f(x)²=f(1/2+x)²-f(1/2+x)+1/4=-f(1+x)²+f(1+x)-1/4+1/4=f(1+x)-f(1+x)²
整理得到,f(1+x)²-f(1+x)=f(x)²-f(x),于是周期是1