(1)λ=0时,Sn+1=
Sn+an+1an+1 an
∴Sn=
Snan+1 an
∵an>0,Sn>0
∴an+1=an,
∵a1=1,
∴an=1
(2)∵Sn+1=
Sn+(λ?3n+1)an+1(n∈N*).an+1 an
∴
?Sn+1 an+1
=λ3n+1,Sn an
则
?S2 a2
=λ?3+1,S1 a1
?S3 a3
=λ?32+1,S2 a2
∴
?Sn an
=λ3n?1+1.Sn?1 an?1
相加得
?1=λ(3+32+…+3n?1)+n?1.Sn an
则Sn=(λ?
+n)?an,(n≥2)
3n?3 2
上式对n=1也成立.
∴Sn=(λ?
+n)?an,
3n?3 2
S