已知常数λ≥0,设各项均为正数的数列{an}的前n项和为Sn,满足:a1=1,Sn+1=an+1anSn+(λ?3n+1)an+1(n

2025-06-20 07:25:30
推荐回答(1个)
回答1:

(1)λ=0时,Sn+1

an+1
an
Sn+an+1
Sn=
an+1
an
Sn

∵an>0,Sn>0
∴an+1=an
∵a1=1,
∴an=1
(2)∵Sn+1=
an+1
an
Sn+(λ?3n+1)an+1(n∈N*).
Sn+1
an+1
?
Sn
an
=λ3n+1

S2
a2
?
S1
a1
=λ?3+1
S3
a3
?
S2
a2
=λ?32+1

Sn
an
?
Sn?1
an?1
=λ3n?1+1

相加得
Sn
an
?1=λ(3+32+…+3n?1)+n?1

Sn=(λ?
3n?3
2
+n)?an,(n≥2)

上式对n=1也成立.
Sn=(λ?
3n?3
2
+n)?an

S