1)f'(x)=3x^2-6ax+3b=3(x^2-2ax+b)=2[(x-a)^2+b-a^2]
a<=0时,因为b>0, 当x>0,f'(x)>=b>0
a>0时,当x>0时, f'(x)的最小值为f(a)=b-a^2>=0---> a<=√b
因此综合得:a<=√b
2).f(1)=1-3a+3b
f'(1)=3-6a+3b
切线为:y-f(1)=f'(1)(x-1)
y=(3-6a+3b)x-2+3a
对比系数得:3-6a+3b=4, -2+3a=-1
解得:a=1/3, b=1