∵(a1006-1)3+2013(a1006-1)=1>0,(a1008-1)3+2013(a1008-1)=-1<0,
∴a1006>1,a1008<1,即a1008<a1006,
设a=a1006-1,b=a1008-1,
则a>0,b<0,
则条件等价为:a3+2013a=1,b3+2013b=-1,
两式相加得a3+b3+2013(a+b)=0,
即(a+b)(a2-ab+b2)+2013(a+b)=0,
∴(a+b)(a2-ab+b2+2013)=0,
∵a>0,b<0,
∴ab<0,-ab>0,
即a2-ab+b2+2013>0,
∴必有a+b=0,
即a1006-1+a1008-1=0,
∴a1006+a1008=2,即a1006+a1008=a1+a2013=2,
∴S2013=
=2013,2013(a1+a2013) 2
故选:B.