y=1+tamx分之sinx 导数题

2025-06-22 13:00:42
推荐回答(2个)
回答1:

0+dy/dx * tanx/sinx=(sec^2xsinx-cosxtanx)/sin^2x=sinx(sec^2x-cosx/cosx)/sin^2x=(sec^2(x)-1)/sin(x) =tan^2x/sinx=tanx/cox
答案是:(sec^2(x)-1)/sin(x)或tanx/cox

回答2:

y = sinx / (1 + tanx)
dy / dx =
1 / (1 + tanx)² * [cosx(1 + tanx) - sinx(sec²x)]
1 / (1 + tanx)² * (cosx + sinx - sinxsec²x)
1 / (1 + tanx)² * [cosx - sinx(sec²x - 1)]
(cosx - sinxtan²x) / (1 + tanx)²