已知数列{an}为等差数列,且a5=14,a7=20.设数列{bn}的前n项和为Sn,且bn=2-2Sn(1)求数列{an}和{bn}的

2025-06-23 04:27:59
推荐回答(1个)
回答1:

(1)∵数列{an}为等差数列,且a5=14,a7=20,设公差为d,

a1+4d=14
a1+6d=20
,解得a1=2,d=3,
∴an=2+(n-1)×3=3n-1.
∵数列{bn}的前n项和为Sn,且bn=2-2Sn
令n=1,则b1=2-2S1=2-2b1,∴b1=
2
3

当n≥2时,由bn=2-2Sn
得bn-bn-1=-2(Sn-Sn-1)=-2bn
bn
bn?1
=
1
3

∴{bn}是以b1
2
3
为首项,
1
3
为公比的等比数列,
∴bn=
2
3
?(
1
3
)n?1
=
2
3n

(2)由(1)知cn
an
bn
(3n?1)?3n
2

Tn
1
2
[2?3+5?32+8?33+…+(3n-1)?3n],①
3Tn=
1
2
[2?32+5?33+8?34+…+(3n-1)?3n+1],②
①-②,得:
-2Tn=
1
2
[6+33+34+…+3n+1-(3n-1)?3n+1]
=
1
2
[6=
33(3n?1?1)
3?1
-(3n-1)?3n+1]
=