(1)∵数列{an}为等差数列,且a5=14,a7=20,设公差为d,
∴
,解得a1=2,d=3,
a1+4d=14
a1+6d=20
∴an=2+(n-1)×3=3n-1.
∵数列{bn}的前n项和为Sn,且bn=2-2Sn,
令n=1,则b1=2-2S1=2-2b1,∴b1=
,2 3
当n≥2时,由bn=2-2Sn,
得bn-bn-1=-2(Sn-Sn-1)=-2bn,
∴
=bn bn?1
,1 3
∴{bn}是以b1=
为首项,2 3
为公比的等比数列,1 3
∴bn=
?(2 3
)n?1=1 3
.2 3n
(2)由(1)知cn=
=an bn
,(3n?1)?3n
2
∴Tn=
[2?3+5?32+8?33+…+(3n-1)?3n],①1 2
3Tn=
[2?32+5?33+8?34+…+(3n-1)?3n+1],②1 2
①-②,得:
-2Tn=
[6+33+34+…+3n+1-(3n-1)?3n+1]1 2
=
[6=1 2
-(3n-1)?3n+1]
33(3n?1?1) 3?1
=