作AE⊥平面BCD于E,在EA上截取EO=EA/4,则O是正四面体A–BCD的内接球的球心。
BC=36,BE=BC/√3=12√3,
AE=√(AB^2-BE^2)=12√6,OE=3√6,
以EB,垂直于EB的直线、EA为x,y,z轴建立空间直角坐标系,则
B(12√3,0,0),C(-6√3,18,0),O(0,0,3√6),球半径r=3√6,
设M(rcosusinv,rcosucosv,r+rsinu)(-π/2<=u<=π/2,0<=v<2π),则
MB+MC/3=√[(4r-rcosusinv)^2+(rcosucosv)^2+(r+rsinu)^2}
+(1/3)√[(2r+rcosusinv)^2+(√6r-rcosucosv)^2+(r+rsinu)^2]
=r{√[16-8cosusinv+cos^usin^v+cos^ucos^v+1+2sinu+sin^u]
+(1/3)√[4+4cosusinv+cos^usin^v+6-2√6cosucosv+cos^ucos^v+1+2sinu+sin^u]}
=r[√(18-8cosusinv+2sinu)+(1/3)√(12+4cosusinv-2√6cosucosv+2sinu)],繁!