D(1)=0
D(2)=1
D(3)=2
D(4)=9
D(5)=44
D(6)=265
D(7)=1854
错位重排的结论:
如果有n个对象,则错位重排的情况数用Dn表示,需要大家了解的是:
D2=1,D3=2,D4=9,D5=44。
错位重排的题干特征还是非常明显的,比如四个大厨烧了四道菜,每个大厨都不吃自己菜的方式有多少种,这就是3个元素的错位重排,注意不是6个元素的错位重排;
再比如有4个信封对应着四封信,每封信不装自己信封的方式有多少种就是四个元素的错位重排;有5对夫妻去跳舞,相互交换舞伴,舞伴不是自己配偶的方式有多少种,就是5个元素的错位重排。
扩展资料:
表述为:编号是1、2、n的n封信,装入编号为1、2、n的n个信封,要求每封信和信封的编号不同,装法:
对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1,
Dn=(n-1)(Dn-2+Dn-1) 此处n-2、n-1为下标。
n>2
只需记住Dn的前几项:D1=0,D2=1,D3=2,D4=9,D5=44。我们只需要记住结论,进行计算就可以。
参考资料来源:百度百科-错位重排
1、D(1)=0
2、D(2)=1
3、D(3)=2
4、D(4)=9
5、D(5)=44
6、D(6)=265
7、D(7)=1854
【由来】:
错位重排问题是一种比较难理解的复杂数学模型,是伯努利和欧拉在错装信封时发现的,因此又称伯努利-欧拉装错信封问题。
错位重排问题的通项公式:
已经D1=0,D2=1,Dn=(n-1)(Dn-2+Dn-1),求Dn。
Dn = (n-1)Dn-1 + (n-1)Dn-2
Dn-nDn-1 = -[Dn-1 - (n-1)Dn-2]
设Dn-nDn-1=Cn
Cn=(-1)^n
则 Dn = (-1)^n + nDn-1
两边同除(-1)^n
设Dn/(-1)^n=Bn
Bn = 1 - nBn
两边同除n!
设Bn/n!=An
An+An-1=1/n!..................(1)
An-1+An-2=1/(n-1)!.........(2)
............
A2+A1=1/2!......................(n-1)
A1=D1=0..........................(n)
(1)-(2)+(3)..............(n)得
D(1)=0,D(2)=1,D(3)=2,D(4)=9,D(5)=44,D(6)=265,
D(7)=1854
请采纳