如图,已知:△ABC中,CD⊥AB于D,AC=4,BC=3,BD= 9 5 .(1)求CD的长;(2)求AD的长;(3

2025-06-21 09:42:37
推荐回答(1个)
回答1:

(1)∵CD⊥AB,
∴∠CDB=∠CDA=90°,
∵BC=3,BD=
9
5

∴由勾股定理得:CD=
B C 2 -B D 2
=
3 2 -(
9
5
)
2
=
12
5


(2)在Rt△ADC中,由勾股定理得:AD=
A C 2 -C D 2
=
4 2 -(
12
5
) 2
=
13
5


(3)在Rt△ACB中,AB=AD+BD=
13
5
+
12
5
=5.

(4)证明:∵AC=4,BC=3,AB=5,
∴AC 2 +BC 2 =AB 2
∴∠ACB=90°,
即△ACB是直角三角形.