在三角形ABC中,内角A,B,C的对边分别为a,b,c。若a2-b2=31⼀2bc, sinC=2×31⼀2sinB,则A=?

2025-06-20 07:43:38
推荐回答(1个)
回答1:

以为a、b、c成等比,所以b2=ac 原式=cosA/sinA+cosC/sinC=(sinCcosA+cosCsinA)/sinAsinC=sin(A+C)/sinAsinC=sinB/sinAsinC由正弦定理,a/sinA=b/sinB=c/sinC=2R 所以sinA=a/2R,sinB=b/2R sinC=c/2R 所以原式=b/2R*4R2/ac=2R/b=1/sinB 又因为 cosB=3/4 0