f′(x)=
,xcosx?sinx x2
令g(x)=xcosx-sinx,则g′(x)=cosx-xsinx-cosx=-xsinx,
当x∈(0,
)时,g′(x)<0,g(x)递减,π 2
∴g(x)<g(0)=0,f′(x)<0,
∴f(x)在(0,
)上单调递减,π 2
又f(-x)=f(x),∴f(x)为偶函数,在(-
,0)上递增.π 2
(1)x1>x2,f(x1)<f(x2)不成立;
(2)由x12>x22,得|x1|>|x2|,∴f(|x1|)<f(|x2|),即f(x1)<f(x2)成立;
(3)|x1|>x2,取x1=-
,x2=-1,则f(x1)<f(x2)不成立;1 2
(4)x1+x2<0,取x1=-
,x2=-1,则f(x1)<f(x2)不成立;1 2
(5)x1>|x2|,即|x1|>|x2|,由(2)知f(x1)<f(x2)成立;
故答案为:②⑤.