∫√(sin^3 x-sin^5 x)dx
=∫√(sin^3 x*cos^2 x) dx
=∫√(sin^3 x)*|cosx| dx
=∫(上限π,下限π/2)-cosx*√(sin^3 x)dx+∫(上限π/2,下限0)cosx*√(sin^3 x)dx
=∫(上限π,下限π/2)-√(sin^3 x)dsinx+∫(上限π/2,下限0)√(sin^3 x)dsinx
=-2/5*(sinx)^(5/2)|(上限π,下限π/2)+2/5*(sinx)^(5/2)|(上限π/2,下限0)
=2/5+2/5
=4/5
sin³ x-sin^5x=sin³x(1-sin²x) =sin³xcos²x
当0
√(sin³xcos²x)=sinxcosx√sinx
当0.5π
√(sin³xcos²x)=-sinxcosx√sinx
sinxcosx√sinx=sin^(1.5)x*cosx
我们知道dsin^(1.5)x=1.5sin^(0.5)xcosxdx=1.5cosx√sinxdx
所以∫sinxcosx√sinxdx=(2/3)*∫sixdsin^(1.5)x
令sinx=t,得到
∫sixdsin^(1.5)x=∫tdt^(1.5)=∫1.5*t^(1.5)dt=(1.5/2.5)t^(2.5)
下略