∫√(sin^3 x-sin^5 x)dx 上限π 下限0 求定积分

2025-06-23 09:23:21
推荐回答(2个)
回答1:

∫√(sin^3 x-sin^5 x)dx

=∫√(sin^3 x*cos^2 x) dx

=∫√(sin^3 x)*|cosx| dx

=∫(上限π,下限π/2)-cosx*√(sin^3 x)dx+∫(上限π/2,下限0)cosx*√(sin^3 x)dx

=∫(上限π,下限π/2)-√(sin^3 x)dsinx+∫(上限π/2,下限0)√(sin^3 x)dsinx

=-2/5*(sinx)^(5/2)|(上限π,下限π/2)+2/5*(sinx)^(5/2)|(上限π/2,下限0)

=2/5+2/5

=4/5

回答2:

sin³ x-sin^5x=sin³x(1-sin²x) =sin³xcos²x

当00,cosx>0

√(sin³xcos²x)=sinxcosx√sinx

当0.5π0,cosx<0

√(sin³xcos²x)=-sinxcosx√sinx

sinxcosx√sinx=sin^(1.5)x*cosx

我们知道dsin^(1.5)x=1.5sin^(0.5)xcosxdx=1.5cosx√sinxdx

所以∫sinxcosx√sinxdx=(2/3)*∫sixdsin^(1.5)x

令sinx=t,得到
∫sixdsin^(1.5)x=∫tdt^(1.5)=∫1.5*t^(1.5)dt=(1.5/2.5)t^(2.5)

下略