解方程x³+x²+(6-√5)x+(√5)-1=0
解:令x=y-(1/3)...........(1),代入原式得(目的是消去二次项):
(y-1/3)³+(y-1/3)²+(6-√5)(y-1/3)+(√5)-1
=y³-y²+(1/3)y-1/27+y²-(2/3)y+1/9+(6-√5)y-(1/3)(6-√5)+(√5)-1
=y³+(17/3-√5)y+(4√5)/3-79/27=0
设p=(17/3)-√5;q=(4√5)/3-79/27;则:
y₁={-(q/2)+√[(q/2)²+(p/3)³]}^(1/3)+{-(q/2)-√[(q/2)²+(p/3)³]}^(1/3)
y₂=ω₁{-(q/2)+√[(q/2)²+(p/3)³]}^(1/3)+ω₂{-(q/2)-√[(q/2)²+(p/3)³]}^(1/3)
y₃=ω₂{-(q/2)+√[(q/2)²+(p/3)³]}^(1/3)+ω₁{-(q/2)-√[(q/2)²+(p/3)³]}^(1/3)
其中ω₁=[-1+(√3)i]/2;ω₂=[-1-(√3)i]/2.
然后将y₁,y₂,y₃依次代入(1)式即得原方程的根x₁,x₂,x₃.具体是多少,你自己算吧!