log4(4^x+1),g(x)=(k-1)xF(x)=f(x)-g(x)=log4(4^x+1)-(k-1)xF(-x)=log4[4^(-x)+1]+(k-1)x=log4[(4^x+1)/4^x]+(k-1)x=log4(4^x+1)-x+(k-1)x=log4(4^x+1)+(k-2)x=F(x)则:-(k-1)=k-2-k+1=k-2k=3/2(2)y=f(2x)=log4(4^2x+1)y=g(2x+m)=1/2(2x+m)=x+m/2=log4 4^(x+m/2)令h(x)=4^(x+m/2)-4^2x-1=-(4^x)^2+4^(m/2)*4^x-1令h(x)=0,即:-(4^x)^2+4^(m/2)*4^x-1=0Δ=4^m-4显然当m≤1时,Δ≤0, 且仅当m=1时,Δ=0故函数y=f(2x)与函数y=g(2x+m)的图像最多只有一个交点。