已知数列{a n }的前n项和S n ,满足 S n =2- a n - 2 2 n (n∈ N * ) (1)求出

2025-06-22 08:09:15
推荐回答(1个)
回答1:

(1)由条件,n=1时,S 1 =2-a 1 -1,解得 a 1 =
1
2

S n =2- a n -
2
2 n
①,∴ S n+1 =2- a n+1 -
2
2 n+1
②,
②-①,得 S n+1 - S n =(2- a n+1 -
2
2 n+1
)
- (2- a n -
2
2 n
)
,即 a n+1 = a n - a n+1 +
1
2 n

所以 a n+1 =
1
2
a n +
1
2 n+1

(2)证明:∵ a n+1 =
1
2
a n +
1
2 n+1
,∴ 2 n+1 a n+1 - 2 n a n =1
2 n+1 a n+1 -3× 2 n a n =3,
b n =3× 2 n ,∵
b n+1
b n
=2
对一切n∈N * 恒成立,
所以存在等比数列{b n },使得{a n b n }是一个公差为3的等差数列;
(3) b n +
300
n
a n
(n∈N * )的最小值为
123
2

由(2)知 2 n+1 a n+1 - 2 n a n =1 ,所以{2 n a n }为公差为1的等差数列,2 n a n =1+(n-1)?1=n,
所以 a n =
n
2 n
,又 b n =3× 2 n
所以 b n +
300
n
a n
=3×2 n +
300
2 n
≥2
2 n ×
300
2 n
=60

2 n =
300
2 n
即2 n =10时取等号,
由于n∈N * ,且n=3时 2 3 +
300
2 3
=
123
2
,n=4时, 2 4 +
300
2 4
=
259
4

所以所求最小值为
123
2