已知函数 f(x)= x 2x+1 ,数列{a n }满足a 1 =f(1),a n+1 =f(a n )(n∈N * ).(Ⅰ)求

2025-06-23 07:25:25
推荐回答(1个)
回答1:

(Ⅰ)a 1 =f(1)=
1
2+1
=
1
3
,a 2 =f(a 1 )=f(
1
3
)=
1
3
2
3
+1
=
1
5

(Ⅱ)∵ a n+1 =
a n
2 a n +1

1
a n+1
=
2 a n +1
a n
=2+
1
a n

1
a n+1
-
1
a n
=2

∵a 1 =
1
3
,∴
1
a 1
=3
∴数列 {
1
a n
}
是首项为3,公差为2的等差数列,
1
a n
=2n+1

a n =
1
2n+1

(Ⅲ) b n = a n ? a n+1 =
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

S n =
1
2
(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
)=
n
6n+9

n=1时,S 1 =
1
15
n
2 n +18
=
1
20
,S n 大于
n
2 n +18

n=2时,S 2 =
2
21
n
2 n +18
=
1
11
,S n 大于
n
2 n +18

n=3时,S 3 =
1
9
n
2 n +18
=
3
26
,S n 小于
n
2 n +18

n=4时,S 4 =
4
33
n
2 n +18
=
2
17
,S n 大于
n
2 n +18

猜想n≥4时,S n 大于
n
2 n +18

证明如下:①n=4时,S 4 =
4
33
n
2 n +18
=
2
17
,S n 大于
n
2 n +18
,结论成立;
②假设n=k时,结论成立,即
k
6k+9
k
2 k +18
,∴2 k >6k-9
n=k+1时,有2 k+1 +18>2(6k-9)+18>6(k+1)+9,
k+1
6(k+1)+9
k+1
2 k+1 +18
,结论成立
由①②可知,结论成立.