(1)设等比数列{an}的公比为q,则1+q+q2=7,
∴q=2或q=-3
∵{an}的各项均为正数,∴q=2
所以an=2n-1
(2)由an=2n-1得S m=2m?1
数列{bn}是等差数列,b1=a1=1,bm=am=2m-1,
而Tm=(b1-
)+(b2-1 2
)+(b3-1 2
)+…+(bm-1 2
)=(b1+b2+b3+…+bm)-1 2
m 2
=
m-1+2m?1
2
=m 2
m=m?2m-22m?1 2
∵Tm-Sm=m?2m-2-(2m-1)=(m-4)2m-2+1
∴当m=3时,T3-S3=-1,∴T3<S3.
∴当m≥4时,Tm>Sm