2ycosx+y=cosxcosx=y/(1-2y)∴|y/(1-2y)|≤1且y/(1-2y)≠-1/2两边平方,得:y^2≤4y^2-4y+13y^2-4y+1≥0(3y-1)(y-1)≥0∴y≥1或y≤1/3这样可以么?
y=cosx/(2cosx+1)=1/2(1-1/(2cosx+1))当cosx最大值1时,y最小值为1/3当cosx最小值-1时,y最大值为1y∈[1/3,1]