数列{an}满足an=3an-1+3n-1 (n≥2),且a3=95.(1)求a1,a2;(2)是否存在一个实数t,使得bn=13n(an

2025-06-22 18:43:23
推荐回答(1个)
回答1:

(1)∵an=3an-1+3n-1 (n≥2),且a3=95.
∴95=3a2+33-1,
解得a2=23.
23=3a1+32-1,
解得a1=5.
∴a1=5,a2=23. (2分)
(2)bn

1
3n
(an+t)为等差数列,必须b1
1
3
(t+5)
b2
1
9
(t+23)
b3
1
27
(t+95)
成等差数列,
t=?
1
2
. (5分),
bn
1
3n
(an?
1
2
)
,当n=1,2,3成等差.
下证此时bn对一切n∈Z+定成等差数列.bn?bn?1
1
3n
(an?
1
2
)?
1
3n?1
(an?1?
1
2
)=
1
3n
(3an?1+3n?
3
2
)?
1
3n?1
(an?1?
1
2
)=1

∴当t=?
1
2
时,{bn}是公差为1的等差数列. (8分)
(3)b1
1
3
(5?
1
2
)=
3
2

bn
2n+1
2
. (10分)
an3n?bn?t=
1
2
[(2n+1)?3n+1]
(12分)
 记Sn
n
i=1