已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于10时,求k

2025-06-23 08:07:44
推荐回答(1个)
回答1:

(1)由方程y2=-x,y=k(x+1)
消去x后,整理得
ky2+y-k=0.
设A(x1,y1)、B(x2,y2),由韦达定理y1?y2=-1.
∵A、B在抛物线y2=-x上,
∴y12=-x1,y22=-x2,y12?y22=x1x2
∵kOA?kOB=

y1
x1
?
y2
x2
=
y1y2
x1x2
=
1
y1y2
=-1,
∴OA⊥OB.
(2)设直线与x轴交于N,又显然k≠0,
∴令y=0,则x=-1,即N(-1,0).
∵S△OAB=S△OAN+S△OBN
=
1
2
|ON||y1|+
1
2
|ON||y2|
=
1
2
|ON|?|y1-y2|,
∴S△OAB=
1
2
?1?
(y1+y2)2?4y1y2

=
1
2
(
1
k
)
2
+4

∵S△OAB=
10