∫(上限-√2下限-2)dx⼀√(x^2-1),用换元公式求解,蟹蟹各位大神了

2025-06-20 07:40:47
推荐回答(2个)
回答1:

设x=secu,2π/3<=u<=3π/4,dx=-sinudu/(cosu)^2,
√(x^2-1)=-tanu,
所以原式=∫<2π/3,3π/4>-du/cosu
=-ln|secu+tanu||<2π/3,3π/4>
=-[ln|-√2-1|-ln|-2-√3|]
=ln|(√2-1)(2+√3)|
=ln(2√2-2+√6-√3).

回答2: