已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1 =3,b 1 =1,a 2 =b 2 ,3a 5 =b 3 ,

2025-06-22 09:11:39
推荐回答(1个)
回答1:

设{a n }的公差为d,,{b n }的公比为q,
∵a 1 =3,b 1 =1,a 2 =b 2 ,3a 5 =b 3
∴a 2 =3+d=q=b 2
3a 5 =3(3+4d)=q 2 =b 3
解方程得q=3,或q=9,
当q=3时,d=0,不符合题意,故舍去;
当q=9时,d=6.
a n =3+(n-1)×6=6n-3,b n =q n-1 =9 n-1
∵a n =3log u b n +v= log u ( 9 3n-3 ) +v,
∴6n-3-v= log u ( 9 3n-3 )
当n=1时,3-v=log u 1=0,
∴v=3.
当n=2时,12-3-3= log u 9 3
u 6 =9 3 ,u=3,
∴u+v=6.
故答案为:6.