求e^xsiny=e^ysinx的微分的答案

2025-06-20 08:24:14
推荐回答(3个)
回答1:

一个较简单、运算量较小的方法:
设F=e^xsiny-e^ysinx.
F分别对x、y求导得:
Fx=e^xsiny-e^ycosx,
Fy=e^xcosy-e^ysinx.
∴dy/dx=-Fx/Fy
=(e^ycosx-e^xsiny)/(e^xcosy-e^ysinx).
∴dy=[(e^ycosx-e^xsiny)/(e^xcosy-e^ysinx)]dx.

回答2:

回答3:

e^xsiny=e^ysinx
d(e^xsiny)=d(e^ysinx)
e^x. dsiny + siny. de^x = e^y.dsinx + sinx. de^y
e^x.cosy. dy +siny e^x.dx = e^y.cosx dx + sinx e^y .dy