(1)①由S n =
两式相减得 a n+1 =
化为(a n+1 +a n )(a n+1 -a n -2)=0. ∵a n >0,∴a n+1 -a n -2=0,即a n+1 -a n =2. ∴数列{a n }是公差为2的等差数列. 又 a 1 = S 1 =
∴a n =1+(n-1)×2=2n-1. ②由①知 S n =
∴
又∵m,k,p∈N * ,m+p=2k,∴ k=
∴
∴
(2)由{a n }是等差数列,设公差为d, 假设存在m∈N * , T m ,T m+1 ,T m+2 构成等比数列.即
∴ ( T m + a m+1 ) 2 = T m ( T m + a m+1 + a m+2 ) , 化为dT m =
若d=0,则a 1 =0,∴T m =T m+1 =T m+2 =0,这与 T m ,T m+1 ,T m+2 构成等比数列矛盾. 若d≠0,要使(*)式中的首项a 1 存在,必须△≥0, 然而△=m 2 d 2 -2m(m+1)d 2 =-(m 2 +2m)d 2 <0,矛盾. 综上所述,对任意n∈N * ,T n ,T n+1 ,T n+2 不能构成等比数列. |