解:(1)证明:在Rt△ABC中,∵CD是斜边中线,
∴CD=AD,
∴∠A=∠OCE.
又∵OE=OC,
∴∠OCE=∠OEC,
∴∠A=∠OEC,
又∵EF⊥AB于F,
∴∠A+∠FEA=90°,
∴∠OEC+∠FEA=90°,
∴∠OEF=180-(∠OEC+∠FEA)=90°,
∴OE⊥EF,
∴EF是圆O的切线;
(2)∵△AEF∽△ABC,
∴
=AE AB
,EF BC
即
=AE 10
,EF 8
设EF=x,则AE=
x.5 4
∵OE⊥FE,FE⊥AB,
∴OE‖AD,
∴
=OE AD
=OC CD
,EC AC
即
=OE 5
6?
5x 4 6
∴OE=5-
x.25 24
过点O作OG⊥AB,则四边形OEFG为矩形.
①当EF=OE时,圆O与AB相切,
x=5-
x,25 24
解得:x=
,120 49
②当EF<OE时,AB与圆O相交,
x<5-
x,25 24
解得:x<
,120 49
则0<x<
;120 49
③当EF>OE时,AB与圆O相离,
x>5-
x,25 24
解得:x>
,120 49
故5≥x>
.120 49